Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-178747

ABSTRACT

Background & objectives: The role of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in congenital bilateral absence of vas deferens and unilateral renal agenesis (CBAVD-URA) has been controversial. Here, we report the cases of five Indian males with CBAVD-URA. The objective was to evaluate the presence or absence of CFTR gene mutations and variants in CBAVD-URA. The female partners of these males were also screened for cystic fibrosis (CF) carrier status. Methods: Direct DNA sequencing of CFTR gene was carried out in five Indian infertile males having CBAVD-URA. Female partners (n=5) and healthy controls (n=32) were also screened. Results: Three potential regulatory CFTR gene variants (c.1540A>G, c.2694T>G and c.4521G>A) were detected along with IVS8-5T mutation in three infertile males with CBAVD-URA. Five novel CFTR gene variants (c.621+91A>G, c.2752+106A>T, c.2751+85_88delTA, c.3120+529InsC and c.4375-69C>T), four potential regulatory CFTR gene variants (M470V, T854T, P1290P, Q1463Q) and seven previously reported CFTR gene variants (c.196+12T>C, c.875+40A>G, c.3041-71G>C, c.3271+42A>T, c.3272-93T>C, c.3500-140A>C and c.3601-65C>A) were detected in infertile men having CBAVD and renal anomalies Interpretation & conclusions: Based on our findings, we speculate that CBAVD-URA may also be attributed to CFTR gene mutations and can be considered as CFTR-related disorder (CFTR-RD). The CFTR gene mutation screening may be offered to CBAVD-URA men and their female partners undergoing ICSI. Further studies need to be done in a large sample to confirm the findings.

2.
Indian J Exp Biol ; 2004 Nov; 42(11): 1043-55
Article in English | IMSEAR | ID: sea-58623

ABSTRACT

Mammalian oviduct is the physiological site for sperm capacitation, gamete fertilization and early embryonic development. The secretory cells lining the lumen of the mammalian oviduct synthesize and secrete high molecular weight glycoprotein (OGP) in response to estrogen. The protein has been shown to interact with gametes and early embryo. Several key functions have been postulated particularly its role in pre-implantation events which would have far reaching implications in assisted reproductive technology and in the development of non-hormonal contraceptive vaccine. The intention of this article is to discuss the current status of the protein and analyze how far the postulated function of OGP has been borne out by the available data.


Subject(s)
Animals , Embryonic Development , Estrogens/pharmacology , Fallopian Tubes/chemistry , Female , Fertility/physiology , Glycoproteins/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL